The Approach and Practice for the Cultivation of Nitrogen-Saving and High-yielding of Super Hybrid Rice

* *

Ma Guohui PHD. & Prof. China National Hybrid Rice R & D Center

Contents

- The Nitrogen-saving issue in Super-High-yielding cultivation of rice
- Approaches for the nitrogen-saving and highyielding cultivation of super Hybrid Rice
- 1. Study and practice of the nitrogen-saving and high-yielding cultivation

1. The Nitrogen-saving issue in Super-High-yielding cultivation of rice

Hybrid rice made great contribution to Chinese food security

+ Basic Chinese situation

- population: about 1.3 billion
 population rate: 22% of world's
- arable land rate: 9% of world's
- Children and rate. 576 of works 5

+ China became self-sufficient in basic food for the first time in modern history

+ Tremendous accomplishment in last century, the innovation of HYBRID RICE, made by Prof. Yuan Longping

Using 9% of the world's arable land Feeding 22% of world's population

Question	Unestion 2: higher N rate result in higher yield? Tab 1. Yield response with N application in different N experiments									
Varieties	Highest yield (t/ha)	Purity N applied (kg/ha)	Data originated							
Wujin9728 8.98 375.0 Feng Tao et al										
9746 11.32 300.0 Ye Huabing et al										
Wuxianggen14	gen14 8.93 300.0 L									
Xieyou9019	9 8.90 <u>300.0</u> Ruan Xinming									
Sanyou63	9.54 170.1 Liu Lijun et al									
9915	9.34	141.5	Liu Lijun et al							
Liangyou 293	12.14	231.0	Demonstration plot							
Liangyoupeijiu	12.26	255.0	Demonstration plot							
High yield Single Double Nation World Problem: 3	Liangyoupeijiu 12.26 255.0 Demonstration plot High yielding cultivation results in higher nitrogen application: Single cropping of rice: 226 kg/ha Double cropping of rice: 128 kg/ha National average: >200 kg/ha Word/s average: >200 kg/ha(FAO, 2002) Problem: 33.6% households consume excessive N at >250 kg/ha (CAU,2005)									

Yield of Super HR: 10.5t/ha 🛑 12t/ha 🛑 13.5kg/ha									
Na	mount app	lied: 202.5kg/	ha 🛑 2	40~270kg/ha	>300??Kg/ha				
Table The yield and amounts of N application for Super hybrid rice demonstration									
Hybrid Yield Namount									
year	location	varieties	(t/ha)	(kg/ha)	marks				
2004	HUNAN	Liangyou293	12.15	231	designed				
2002	HUNAN	Liangyoupeijiu	12 26	255	Less measure for				
		Liangyou293	12.20	420	Sandy soil				
2003			16.10	120					

Question 4: Face to the great yield gap on large scale?

sted

200

The yield of super hybrid rice in test area of Hunan province: 121/hn	12 Potential Yield of the SHR 1
The average yield of single-cropping rice in Hunan: only 6.8-10/hn	¹⁰ Yield gap: 5.16t/ha 9 8.34
The gap: 3,10,000 The possible target of rice production on the arge scale in order to accelerate the healthy development and application of the super HR: Vield incorrect built of 1,5,000	7 6 5 4 Average yield 6.84
The average yield increased up to 7,59-8,341/hn	3 2 1997 1998 1999 2000
Iow to shorten the vield gap of rice pr	oduction on the large sc

What is the corresponding nitrogen-saving techniques for Super HR?

The idea of nitrogen-saving technique

high efficiency of nitrogen use (rice variety, slow release fertilizer and relative techniques)

- less nitrogen application
- High-yielding and profit
- Environmental friendly

Progress : Developed the materialized technical product----Special component fertilizer of lower-N, suitable P & higher P, and new recommendation: 142.5-187.5 kg/ha for the super HR rice cultivation based on the balanced fertilization

2. Approaches for the nitrogen-saving and highyielding cultivation of super **Hybrid Rice**

1) Genetic potential

- Key indicators for Breeding program as a two-way choice : yield potential and wide adaptation Agronomic efficiency of N utilization
- Good new varieties selected perform not only lower nitrogen toleration but higher yield and wide adaptation

2) Management technical potential

Adopt different advanced techniques and skills of fertilizer managements a balanced fertilization and the site-specific nutrient management (SSMN)

3) Materialized technology potential

- Merge special techniques into special kinds of fertilizers
- New component fertilizer with designed lower N, suitable P and higher K based on method of the balanced fertilization
- Hanfeng SCU and CCF based on the slow-release techniques

3. Study and practice of the nitrogen-saving and high-yielding cultivation

3.1 the differences between genotypes in nitrogen response of super hybrid rice

	varieties	N treatments	5	varieties	N treatments
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	Zhun S/1243 588/2469 Long liangyou No 1 C-liangyou 343 586/3218 11615/2469 Anlong35/aixun 6 peiait645/1243 Y-liangyou No1 C-liangyou No1 C-liangyou 87 Liangyoupeijiu Keyou 21 588/747	A、90 kg/hm ² B、180 kg/hm ²	1. 2. 3. 4. 5. 6.	Zhun S/1243 585/2469 Long liangyou No I C-liangyou 343 Zhun S/187 Liangyoupeiji u	A、0 kg/hm ² B、90 kg/hm ² C、180 kg/hm ²

		yield(t/hm ²)		N1 to N2	tes	type		
	varieties	N1 N2		(%)	P<0.05 P<0.01			
	Zhun S/1243	10.475	10.268	2.02	NO			
	588/2469	9.561	9.343		NO			
	Long liangyou No 1	9.183	9.687	-5.20	NO		1	
	C-liangyou 343	9.473	10.147	-6.65	NO			
	58s/3218	9.417	10.287	-8.46	Significant	NO		
	11618/2469	8.447	9.177	-7.96	Significant	NO		
2006	Anlong3S/aixun 6	8757	9.726	-9.96	Significant	NO	II	
	peiai64S/1243	8.658	9.777	-11.45	Significant	NO		
	Y-liangyou No1	9.198	10.376	-11.36	Significant	NO		
	C-liangyou 87	9.378	11.046	-15.10				
	liangyoupeijiu	8.405	10.140	-17.11				
	Keyou 21	7.770	9.483	-18.06			ш	
	58S/747	8.276	11.135	-25.69		Significant		
	Zhun S/1243	11.299	10.937	3.20	NO			
	C-liangyou 343	10.855	11.070	-1.98	NO		I	
2007	Zhun S/187	10.472	10.766	-2.81	NO			
2007	585/2469	10.277	11.290	-9.86	Significant			
	Guang S-1/P117	10.486	11.069	-5.56	Significant		Ш	
	Liangyoupeijiu	9.182	10.388	-13.13	Significant			

3.2 Nitrogen-saving effect of humic acid fertilizer

- a 3 replications, the results as follows:
 BF treatments under nitrogen-saving conditions (minus N 15% to 25%) yielded more significantly than No BF treatments
- Under nitrogen saving 15%, BF treatment yielded the same as 180kg/ha
- No obvious different between BF or no BF under higher N (180kg/ha)
- under nitrogen-saving condition (153-225kg/ha), BF treatment increased the effective panicle: +2.9%-6.3% spikelets per panicle: +2%-9.3% filled spikelets: +0.5-2.9 percentage condition

hı	imous fertilizer, Bl	ack Fertili	zer
varieties	treatments	Pure Nitrogen (kg/ha)	Yield (t/ha)
	No BF+ NS 25%	135	
	BF+ NS 25%	135	6.95Bb
Fengyou	No BF + NS 15%	153	6.92Bb
299	BF + NS15%	153	7.30Aa
	No BF + Full N	180	7.25Aa
	NF + Full N	180	7.24Aa
	No BF+ NS 25%	135	6.76Cc
	BF+ NS 25%	135	7.08Bb
T-you	No BF + NS 15%	153	7.11Bb
207	BF + NS15%	153	7.47Aa
	No BF + Full N	180	7.45Aa
	NF + Full N	180	7.41Aa

3.3 Effect of balanced fertilization and nitrogen-saving of component fertilizer lower N, suitable P & high K the results as follows: In high yielding rice cropping area, it can gain maximum yield under applying high level nitrogen but lower rate of the output to cost nitrogen level >18 🖪 ,rate of output to cost <

In high yielding rice cropping area, treatments of Nitrogen-reducing (from 10% to 40%) can obtain higher yield, that means that the excessive nitrogen is not good for high yield, but a waste of nitrogen resource and deteriorates the environment

Tab 3. Effect of component fertilizer of lower N, suitable P & high K,(in 2004-2005)										
Treatments		A1	A2	A3	A4	A5	A6	A7	A8	
Location	Total N	124.5	106.5	142.5	123.75	141.75	187.5	206.25	0	
	Total NPK	334.5	274.5	394.5	291.75	351.75	440.1	497.25	0	
Liling, Hunan	Yield	9.15	8.40	9.66	8.80	9.60	10.35	10.41	5.85	
	output to input	13.60	10.21	9.92	12.40	11.17	9.68	9.02		

In medium-, high- yielding rice cropping area:

- > Liangyou 293 do not always output high yield under higher level of nitrogen application, Lower N level obtained higher yield .
- There are no significant differences in between different N levels, and nitrogen saving by reducing the total amount of nitrogen can achieve the higher productivity and higher efficiency of N use. So that the Nitrogen recommendation for farmers can be 135 kg/ha to 180 kg/ha.
- The higher nitrogen level ,the lower ratio of output to cost
- nitrogen level >145.0 kg/ha , ratio of output to cost <10.0.

Tab 3. Trea	Tab 3. Effect of component fertilizer of lower N, suitable P & high K, in 2004-2005) Treatments A1 A2 A3 A4 A5 A6 A7 A8										
Location	Total N	124.5	106.5	142.5	123.75	141.75	187.5	206.25	0		
	Total NPK	334.5	274.5	394.5	291.75	351.75	440.1	497.25	0		
Xiang	Yield	9.57	9.11	9.83	9.35	9.59	9.64	9.18	7.85		
Xiang, Hunan	output to input	11.63	13.54	10.10	13.18	11.15	9.01	7.96			
nunan	pat					1					

3.4 The nitrogen-saving Effect of slow-release fertilizer

3.4.1 The differences of yield and nitrogen utilization between slow-release fertilizers

Fertilizers:

- SCU (sulfur coated urea)
- CCF (coated component fertilizer)
- Urea
- Ck (no nitrogen application) Treatments:
- NE: equal nitrogen application at 180kg/ha
- NS: nitrogen application at 135kg/ha Place and years: at the standing plots/field
- of 2 years' continuous experiment in Changsha,

China in 2006 and 2007

Fig.3. The yield differences between slowrelease fertilizers and nitrogen applications

Year	Trea	ment	PE (kg/kg)	N^{-}/N^{+}	AE (kg/kg)	N^{-}/N^{+}	RE(%)	N^{-}/N^{+}	PFP (kg/kg)	NHI	NGP (kg/k
	SCU	N^{-}	40.07a	+12.37	23.44a	+38.37	58.5a	+23.16	67.10a	0.66a	49.60
	SCU	$/N^+$	35.66b		16.94bc		47.5b		48.40c	0.64a	47.06
	COL		33.78b	+11.82	16.68b	+29.3	49.4b	+15.69	61.30b	0.57b	47.51
0006	CCF		30.21cd		12.90cd		42.7d		43.70c	0.56b	45.5
2006			31.19c	+5.55	13.36bc	+18.76	42.8d	+12.34	60.00b	0.56b	46.44
	Ulea		29.55d		11.25d		38.1e		44.40c	0.55b	44.5
	SCU/			+28.47		+75.45		+36.68			
	Urea	N^+		+20.68		+50.58		+24.67			
	SCU	N^{-}	42.16a	+1.64	25.16a	+20.9	59.7a	+18.92	70.65a	0.67a	51.1
			41.48a		20.81b		50.2b		53.56c	0.63b	49.42
	CCE		37.63b	+20.88	19.45bc	+42.18	51.7b	+17.77	64.93b	0.62bc	47.53
007	CCr		31.13cd		13.68d		43.9cd		45.88d	0.59c	46.3
2007	Uran		29.96d	+0.91	13.59d	+23.88	45.4c	+23.04	62.11b	0.56cd	46.7
	Ulea		29.69d		10.97d		36.9e		43.98d	0.55d	45.8
	SCU/			+40.72							
				+39.71				+36.04			

3.4.3 The ratio of NPK under slow release fertilizer N

treat	Effective panicle (/m ²)	Spike- lets	filled	SSR (%)	G
N1D1	183.0d	186.2c	149.9c	80.5b	2
N1D2	201.0c	195.3ab	166.8b	85.4a	25
N1D3	220.0b	199.3a	175.0a	87.8a	
N2D1	205.0c	194.0b	168.0ab	86.6ab	25
N2D2	211.0bc	198.2a	178.4a	90.0a	
N2D3	247.0a	199.9a	179.9a	90.0a	
N3D1	199.0c	201.4a	157.9b	78.4b	
N3D2	223.0b	197.2ab	162.5b	82.4ab	
N3D3	238.0a	196.5ab	162.5b	82.7ab	2
				NS	
Density		NS			
NXD	••	NS	••		

The effects on the tillers	s and pa	anicles b	etween	different
slow-re	lease fe	ertilizers		

Variety, Y-you No 1									
.	SCU		C	CF	Common urea				
I reatments	NS	NE	NS	NE	NS	NE			
Maximum tillers (per m²)	546.9	594.5	517.7	570.6	590.9	633.3			
Effective Panicles (per m ²)	267.0	310.9	243.3	261.6	246.9	270.8			
Effective Panicles rate (%)	48.83	52.31	46.99	45.84	41.80	42.76			
(per m ²) Effective Panicles rate (%)	48.83	52.31	46.99	45.84	41.80	42			

SCU: HanFen SCU, N: P: K=37: 0: 0: 2) CCF: N: P: F
 NE: N 187.5kg/ha; NS: 130 kg/ha (30% N-saving).

1. The maximum tillers were less SCU treatments than common urea, but the effective panicles conversely;

2. Under N-saving 30%, SCU treatments get the same panicles as full common urea.

Conclusion: the NUE. of SCU is higher that of common urea.

3.5.2 Nitrogen supply and absorption delay

n of N absortion (%)

he ratio

1) the differences between slow release fertilizer (left) and different N rate (right)							
treatment	SCUN-	SCUN	CCFN-	CCFN	UreaN-	UreaN	
A (%)	46.31	46.78	54.51	55.90	68.30	64.13	
B (%)	20.09	20.14	16.45	16.78	11.97	12.96	
C(%)	3.47	3.09	1.76	1.05	0.61		
D (%)	30.13	29.99	27.27	26.27			
Total N (g/m²)	20.08	21.16	17.95	18.57	15.89	17.54	

nsplantion to Max tillers B,Max tillers to booti ting to heading D,heading to mature

conclusion: 1) with a tendency for the slow release fertilizer nitrogen to delay the nitrogen supply and absorption; 2) having a good match for the longer mature stage of super hybrid rice due to very large paniele

Levels of N (kg/ha)	leaf folding rate by leaf folder	numbers of Plant	Sheath blight		
		hopper per 100 hills	Ratio of susceptible Ratio of susce		
	(%)	(heads)	plants(%)	hills(%)	
0	0.89	60	0.0	0.0	
90	4.44	440	8.0	20	
135	8.22	1640	16.0	20	
180	10.44	1620	27.0	40.0	
225	15.33	2180	35.0	40.0	
270	26.00	2480	45.0	40.0	
1)	The more nitro	gen, the more pest oth pests and dise	s and diseases; ases are under pro	otection:	

3.5.4 The effects on the diseases and pests of SCU nitrogen-saving cultivation

